Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs. Adapting this approach to 3D synthesis would require large-scale datasets of labeled 3D assets and efficient architectures for denoising 3D data, neither of which currently exist. In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis. We introduce a loss based on probability density distillation that enables the use of a 2D diffusion model as a prior for optimization of a parametric image generator. Using this loss in a DeepDream-like procedure, we optimize a randomly-initialized 3D model (a Neural Radiance Field, or NeRF) via gradient descent such that its 2D renderings from random angles achieve a low loss. The resulting 3D model of the given text can be viewed from any angle, relit by arbitrary illumination, or composited into any 3D environment. Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
DreamFusion generates objects and scenes from diverse captions. Search through hundreds of generated assets in our full gallery.
Our generated NeRF models can be exported to meshes using the marching cubes algorithm for easy integration into 3D renderers or modeling software.
Given a caption, DreamFusion uses a text-to-image generative model called Imagen to optimize a 3D scene. We propose Score Distillation Sampling (SDS), a way to generate samples from a diffusion model by optimizing a loss function. SDS allows us to optimize samples in an arbitrary parameter space, such as a 3D space, as long as we can map back to images differentiably. We use a 3D scene parameterization similar to Neural Radiance Fields, or NeRFs, to define this differentiable mapping. SDS alone produces reasonable scene appearance, but DreamFusion adds additional regularizers and optimization strategies to improve geometry. The resulting trained NeRFs are coherent, with high-quality normals, surface geometry and depth, and are relightable with a Lambertian shading model.
@article{poole2022dreamfusion,
author = {Poole, Ben and Jain, Ajay and Barron, Jonathan T. and Mildenhall, Ben},
title = {DreamFusion: Text-to-3D using 2D Diffusion},
journal = {arXiv},
year = {2022},
}
星途璀璨李自成电视剧印度青济公第二部何佳宣金刚狼三白发魔女幸运库克奇天屠龙记女间谍在线观看绿川光依天屠龙记冰川时代2国语版欢乐糖果屋大冢芳忠勇者燕池悟夏家三千金演员鬼入侵德安公主十字路口《熔炉》剿匪记朱元璋连续剧血色苍穹第二季恶魔犬欢乐颂2剧情介绍谎言在线前女友俱乐部爱有天意聊斋志异之婴宁魔王学院麻辣老师徐风处刑人全程热恋奇幻精灵法阵先锋林俊杰电视剧终结者3电影余芷慧隋唐英雄6苏幻儿朱梓骁新电影在线小小厨神金正贤何佳宣爱不需要承诺箭在弦上不得不发那个人不是我乌鸦的拇指暗恋橘生淮南金刚在线观看海绵宝宝第四季王小凤95视频在线观看反恐特战队电视剧干物妹小埋贵妇人青年马克思大话西游经典奶奶再爱我一次绝色武器电影不良人风云雄霸花千骨原始求生记碧血长天斗罗大陆绝世唐门恶灵骑士在线观看计中计状元财智取威虎山下载赵觉民前往世界的尽头魔电影归乡还珠3祝延平版武松封神电视剧李菊藕世界因你而不同楚濂花千骨慕尼黑乔森雷恪生同盟粤语我的老婆不是人隋唐演义ol冯巩电视剧少狼第七季怪物军团天涯明月心双喜盈门仙侠剑爱情公寓免费观看封神电视剧死侍二僵尸新娘千金电视剧八十天环游地球美味天王国语乡村爱情四银魂1乔振宇人民的名义陈群芳郑袖南伏龙僵尸星球爆笑虫子第四季乱世丽人行生死劫杀1946战火中的芭蕾林海雪原主题曲师傅下载谍影重重踮起脚尖吻到爱日本在线资源曾虹畅哑巴新娘无证之罪结局光阴故事一路繁花相送仙剑奇侠传三谢思潇我的傻瓜老婆小鬼当家电影美国大片在线观看最新电影大全七大罪麻雀电视剧秘杀名单演员表大话女儿国如果我们是兄弟万物理论人类衰退之后呦呦鹿鸣天空2沈七七大王来巡山王大花毛帮初隋唐英雄97拆弹专家演员表建军伟业脱轨电影大追捕粤语周雪梅刘以达搜索大决战电影洞知否知否绿肥红瘦昂首阔步迷失爱啊少林门王乙竹龙腾虎跃电影致命仙剑奇谭狐狸的夏天快枪手冰河世纪大冒险厄夜怪客重返17岁2019小丑侯京健警花出更一寸相思杨玥花园宝宝英文版乱世丽人行电视剧爱在旅途女主角中场战事东京塔日剧梅花三弄之水云间吴刚主演的电视剧麒麟幻镇三国1美版魔法战队幽灵僵尸天仙配电影少女杀手重案六组3马晓晴多少爱我们相爱吧金亮程雍杀手的童话宫锁珠帘契约2无罪谋杀穆桂英电视剧我的儿子朋友2电影抗日小奇兵隐形的他完美音调1